PHYSICAL REVIEW E

VOLUME 48, NUMBER 3

SEPTEMBER 1993

Harmonic plane waves in a chiral slab
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We illustrate the three-dimensional complex formalism of electromagnetism previously developed [P.
Hillion, Phys. Rev. E 47, 1365 (1993)] for time-harmonic plane waves propagating in an isotropic homo-

geneous chiral slab.
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I. INTRODUCTION

We discuss in this work the propagation of an elec-
tromagnetic plane wave through a homogeneous isotro-
pic chiral slab immersed in a homogeneous isotropic
achiral medium. We use the three-dimensional (3D) com-
plex formalism previously developed [1], except that in-
stead of the Tellegen constitutive relations

D=e¢E+aH, B=pH+BE (N
we use the Post constitutive relations [2]
D=¢E+iyB, H=iyE+u B, i=vV—1 ()

which, in addition to being covariant, make calculations
easier and from (1) and (2) we get

a=iyu, B=—iyu. 2"

In these relations E,H are the electric and magnetic
fields, D the displacement field, B the magnetic induc-
tion, €, the permittivity and permeability, and «,f3,y
the chirality parameters.

In the 3D complex formalism the electromagnetic field
is described by a complex vector

A=VeE+iVuH , 3)
satisfying Maxwell’s equations
VXA=in*3, A, V-A=0, x,=ct, @)

V is the nabla symbol and the refractive index n ™ is

172
=2

ni:(E‘u,)l/z(ligy), é—: c

(5)

We note A (respectively A7) the solutions of Egs. (4)
with n* (respectively n 7). For an achiral medium where
v =0 we use the notations

6’, #I’ nI:’\/eI‘lLI’ §I=

6,

, 1/2
1‘—} , A (6)

Let us now consider the plane-wave solutions of Eqgs.
(4) when the (x,z) plane is the incidence plane. In an
achiral medium, the components A}- (j=1,2,3) of a
linearly polarized wave are [1]
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—iky(xy+n'x cos@+n'z sinf)
Ai(x,z,xg)=e °7°

Fy(6)Y', (7)
with

F(8)=—isin@, F,(0)=1, F5(0)=icosO, (8)

where 9’ is the wave amplitude with components ¢ and
1y that we write in agreement with (3):

Y=VeEYp+iviuyy ©)
Two circularly polarized waves propagate in the chiral
medium. One is right handed, the other is left handed
corresponding to both signs of n in Eqs. (4). The com-
ponents Aji of these waves are [1]
—iko(x0+nix cos6t +nEzsinoT)

Fr (0%t
(10)

A}t(x,z,xo)=e

with
F(6t)=—isin0", Fr(e%t)=1, F{(6")=icoso™,
F7(07)=isind~, F,(67)=1, F; (07 )=—icosd .

(11)

But for circularly polarized waves we have

+i \/ﬁH =V'eE, so we define the amplitudes in (10) by
the relations

pr=22Vepy , T =—2iVuypy . (12)

For a plane wave incident from an achiral medium on
the boundary S of a chiral medium located at x =0 the
continuity of the phase e*C) on § implies the
Descartes-Snell relations

n'sin@; =n’'sin@, =n "sinf;" =n “sin6; , (13)
1 r t t

where 6;, 6,, 6 are the angles of incidence, reflection,
and refraction, respectively.

Now if the incident wave comes from the chiral medi-
um and if the boundary S is located at x=d the
Descartes-Snell relations become

+

n*singi =n *singt =n'sing, , (14)

where @F, @f, @, are now the angles of incidence,
reflection, and refraction at x =d.
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Here we want to calculate the amplitudes of the fields
reflected and refracted by a chiral slab located between
x =0 and x =d. Of course this requires us to know the
boundary conditions at both interfaces.

II. BOUNDARY CONDITIONS

A. Achiral-chiral interface

A linearly polarized wave is incident on the boundary
surface S of a chiral medium at x =0. In the chiral medi-
um propagate two circularly polarized waves and the
boundary conditions requiring the continuity of the
tangential components of E and H across the interface S
take the form [1]

Ve(ReA'),,=VEAT+AT)

»z 2

— - (15)
Vp(ImA'), , =Vu'(AT—AT),, .

Now in agreement with (9) and (12) we write the ampli-
tude ¢’ and ¥ in (7) and (10):

V.=V'e€Qp+iV'Qy (incident wave) ,
Y, =VEQL+iVu'Qy (reflected wave) , (16)
Y =2VeT, , ¥, =—2iVuTy (refracted waves) .

Leaving aside the exponential term in agreement with
(13) we get from (7), (10), and (16) for the components
A, ,and A},

A, =Ve(Qr+R)+V ' (Qu+Ry) , 170
— — a

A,=iV€cos(0;,)(Qr —Rg)—V ' cos(6,(Qy—Ry) ,
where in A] we used the relation cosd, = —cos6; and
AS=2VeTy , A;=—2iVuTy, 17
AS=2iVecos(0; )Ty , A7 =—2Vcos(6; )Ty .
Substituting (17a) and (17b) into (15) gives the relations

Qy+Ry=Ty—i& 'Ty ,

Qe tRpg=Tp—ifTy ,

(18a)

and

£ cos(0;(Qy—Ry)=Ecos(0;, )Ty —icos(6; )Ty ,
(18b)

£ ' cos(0,(Qp —Ry)=E 'cos(6; )T —i cos(6; )Ty .

In terms of the incident amplitudes Qp,Qy the solution
of (18a) and (18b) has the form

Tp=T\Qg+T,Qy, Rg=R;Qr+R,0y,
Ty=T,Q5+T»0y, Ry=R,Qp+RyQy .

Then, introducing the notations

(19)

- +
1 £ cos0, —i £ cosO,
- — —_— = — -+ —_—
L) I+ & cosb; ] > 412 2& & cos6;
(20a)
- +
_ —ig 1+§_c059, _1 1+§_' cos6,
2 2 & cosf; |’ 2= & cosb,;

and with 4 =a | a,, —a,a,,

by =A aj +ikay), byp=A4 Yay tikay),
(20b)

b2,=A_1(a12+i§_ia11) ’ b22=A71(‘122+i§_1‘121) >

we get
T.,=A 'a,, rs=12,
Rllzbll_l’ R12=_"b12 ) (21)

Ry =—by, Rpyy=by—1.

These relations are the Fresnel formulas for a linearly po-
larized plane waves incident from an achiral medium on
the plane boundary of a chiral medium. Similar results
have been previously obtained by several authors [3,4,5]
using different constitutive relations.

B. Chiral-achiral medium

Let us now consider a couple of right-handed and left-
handed circularly polarized plane waves incident from an
achiral medium on a plane surface located at x =d. It is
assumed that these circularly polarized waves were gen-
erated by a linearly polarized wave incident on the plane
x =0.

The boundary conditions (15) are still valid; only the
expressions of the wave amplitudes change. Discarding
in agreement with (14) the exponentials

e —iko(xy+nz sing)

and introducing the angles
8 =konT cos(@f)d=—8F, 8,=kon'cos(p,)d , (22)
we get from (10), (11), and (12) at x =d
+ — oA 08t~ —ish
AS=2Ve(Qpe ' +Rge '),

_ = A i5: —id;
Ay ==2iVu(Qye”" +Rye ),

~ 8} —i8; (23)
A =2iVecosp; (Qpe ' —Rgze '),
Ay =—2Vu Cosq’i_(QHeiB; —Rye _iai_) ,

where we used in A the relation cosp = —cosg?.
Similarly from (7), (8), (9) we have
, — AN  STTIAN iS5
A=(VeTp+ivVp'Tyle,
(24)

AL =i cos(p, Ve Ty —cos(p)Viu'Ty ]eia’ .
In (23) and 24) O, R, and T represent the amplitudes of
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the incident reflected and refracted waves at x =d. Sub-
stituting (23) and (24) into (15) gives the relations

A i A I8 -8 ~ 8t A —ist

Tre ' =0ue™ +Rye " —ie (Qge'™ +Rye ),
(25a)

P PN T i5 A 08 —is"

Tre''=0pe +Rye'™ —i&(Ope™ +Rye )

and

& cos(g, )em'?n=§008(¢’z_)(deiﬁi——ﬁge_isr)

A~ ist —isF
—icos(qp,-“L)(QEels’ —Rpe *)

(250)
—1 8,4 _ o A 08T —is}F
£ Lcos(g,)e "Tr=E"cos(p;" Qre ' —Rge )
-—icos(¢>[_)(Q\Hei6"w—ﬁHe_i5;).

To solve (25a) and (25b) we introduce the functions

_ COS@; __ £ cosg;
H)=1T 5 2P g =1 T & . (26
a (¢7l ) é—r COS¢t ’ ﬁ (¢l ) § COSqD, ( )

and the matrices C* with the elements

+is” _
ch=xEcos(ple ' at(g),

’ .o+
cﬁ= _T_iicos((p, )eilbi ai(¢i+) ’
£ . 27)
k= ¢j—§cos(cp, e BH@T)
+ist
CiziEl;cos(cp,)e YR

Then, eliminating 7 and T, from (25a) and (25b) gives

+A +A — . —
CHQH+C12QE_C11ﬁH+ClzﬁE ’

~ ~ _ B (28)
c;—lQH_'—c;—ZQE:CZlﬁH +C22ﬁE .
The solution of the system (28) is
R\H:rllQ\H+r12QE ,
(29)

2 _ Py P
Rp=r;Qp+trnQk .,

with

=t -+ R P
rn=T"Heneli—cpea) s ra=T " (cpc—cpey),

R P P Pt P
rn=T"eyey —cyey) s rp=C"(cpen—cyen),

IF'=ciicy—cpcyr - (29')
Now substituting (28) into (25a) gives
Ty=t1,04+1,0k »
HTIur 7nlE (30)

Te=1,0n+1,,0z »

with

2189
- i(8;7 —8,)
t11:(1+r11—l§ ]r21)el ! )
_ i(81—5,)
t=—i€ (N +ry+ikrple 0 0,
(87 —8,) (30°)
— 1 P
ty=—i&(l+r +iE ry)e 0,
i(8;"—8,)

tyy=(14ry—ifryle

Relations (29) and (30) are the Fresnel formulas for the
reflected and refracted electromagnetic fields at a chiral-
achiral interface.

III. ELECTROMAGNETIC WAVES
THROUGH A CHIRAL SLAB

Let us now consider a chiral slab of thickness d im-
mersed in an achiral medium and confined between the
two planes x =0 and x =d. A linearly polarized wave is
incident at an angle 6; on the interface x =0. We assume
[4] that four waves propagate in the slab: two toward the
interface x =d and the other two toward the interface
x=0. Then, one has 11 angles of incidence, reflection,
and refraction as shown in Fig. 1,

0,,0,,0597, @7, @0 X > (31)

where y;" is the angle of incidence at x =0 for the wave R
reflected at x =d. But they are not independent since one
has

chiral medium

FIG. 1. A homogeneous isotropic chiral slab immersed in a
homogeneous isotropic achiral medium. The notation shown
refers to a plane wave incident from the left.
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gr=6r, xi=m—gF . 61

Now the Descartes-Snell relations are

n'sin@; =n'sind, =n=* sin6F =n*tsing =n'sing, , (32)
which implies 6;,=¢, in addition to 6,=7—86,,
P =m—0.

The incident, reflected, and refracted fields are
Q=(Qy,Qr), R=(Ry,Rg),
T=(Ty,Te)=0=(0s.0x) , (33)
R=Ry,Rg), T=(Ty,Tg).

Let us now apply the boundary conditions (15) at x =0.
The relations (17a) are still valid while instead of (17b)
one has

AS=2Ve(Tz+R;),
Ay =—=2iV(Ty+Ry)

_ . (34)
AS =2icos(6; We(Ty—Rpg),
A =—2cos(6; WuTy—Ry) ,
where we used the relation " =7 —6F.
From (17a) and (34) we get the four equations
Qy+Ry= TH+ﬁH—i§_‘(TE +Ry),
(35a)
Qp+Ry=Ty+R,—i&(Ty+Ry)
and
cos(6,)E'(Qy — Ry )=cos(6; )E(Ty —Ry)
—icos(0; Tz —Ryg),
(35b)

cos(6;)E' "W Qg —Rg)=cos(8," )¢~ Ty ﬁ)
—icos(6; Ty —Ry) .

Let us remark that in (17a) the amplitudes (Ry,Ry)
represent the reflected field due to the incident field
(Qp,Qpg). Butin (35) (Rg,Ry) include also the refracted
amplitudes due to the field ( ﬁ{ R n) reflected from the in-
terface x =d.
Eliminating Ry and Ry from relations (35) gives

Q=ATT+AR, (36)

where A " is the matrix with elements (20a) that from
now on we denote a,,7,s=1,2 and A ~ the matrix with
elements a, obtained by changing (1+ ---) into
(I—---)in (20a).

We now use relations (29) and (30) supplied by the
boundary conditions at the interface x =d. Since accord-
ing to (33) one has (T, Ty )=(0, Q) we may write (29)

R=RT, (37)

where 72 is the matrix with elements (29’).
Eliminating R and R, from (36) and (37) gives

Q=UT , (38)
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where U is the matrix with elements [using (20a) and
(29"]
=afi+ o+ o =ath+ o+ 5
Un=anTrma@nTrpdpn, Upp=ap Trpa Trpdn,
(38)
uy =ai+rap+ s =a+ 5+ -
21 21 11812 TF1Q0; », U TAy Trpdy Trpa) .

The solution of system (38) is

T=U"'Q. (39)
Now from (35a) and (37) we get

R=—Q+YT, (40)
with

vy =14r,,—i&” (Atry+ikry),

(40"

1 —
215 V= ’§

Uy =—i&(1+r FiE ), vyp=1+ry—ifr, .

Substituting (39) into (40) gives the amplitude of the elec-
tromagnetic field reflected by the achiral slab

R=—(1—-U"'V)Q . (41)

To obtain the amplitudes refracted by the slab we use
once more the equality (O, 0y )=(Tx, Ty) and we write
(30)

T=aT, (42)

where 7 is the matrix with elements (30’).
Substituting (39) into (42) gives

T=Tu'Q. (43)

The expressions (43) represent the field diffracted by a
chiral slab.
To sum up, in terms of the 1nc1dent time-harmonic

linearly polarized plane wave o —(Q ) the expressions of
the reflected field R = ( R,

of the refracted field T'=(

chiral slab are

at the interface x =0 and

? .
T:j ) at the interface x =d of a

R=—(1—-U"'V)Q, T=TUuU 'Q, (44)

where U, %V, and T are the matrices (38’), (40’), and (30’),
respectively.

IV. CONCLUSIONS

In this work we used the 3D complex formalism to dis-
cuss the propagation of time-harmonic plane waves in a
chiral slab assuming that four waves propagate in the
slab. We do not discuss the physical implications of rela-
tions (44) since it was already made, for instance, in [4].

The real question is whether the 3D complex formal-
ism is simpler than the Maxwell-Heaviside formalism to
discuss electromagnetic wave propagation in chiral
media. Since the 3D complex formalism is not covariant
under the space inversions the answer is a priori yes for
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people thinking that a physical problem is easier to solve
when the mathematical formalism respects the physical
symmetries.

This a priori positive answer is justified by the compar-
ison of the results obtained here with those of [4] and in
fact we used the same assumptions as in [4] to make this
comparison possible. According to (44) the reflected and

refracted amplitudes by the chiral slab require only the
inversion of the 2 X2 matrix % while in [4] one has to in-
verse a 8 X 8 matrix a much more difficult task.

The author regrets having no access to a computer,
making him unable to discuss more realistic problems,
but he hopes that some people will be convinced that the
3D complex formalism is worth using.

*Address for correspondence: 86 Bis Route de Croissy,
78110 Le Vésinet, France.
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