Harmonic plane waves in a chiral slab

Pierre Hillion*
Institut Henri Poincaré, 75231 Paris, France
(Received 26 April 1993)

We illustrate the three-dimensional complex formalism of electromagnetism previously developed [P. Hillion, Phys. Rev. E 47, 1365 (1993)] for time-harmonic plane waves propagating in an isotropic homogeneous chiral slab.

PACS number(s): 03.40.Kf, 03.50.De

I. INTRODUCTION

We discuss in this work the propagation of an electromagnetic plane wave through a homogeneous isotropic chiral slab immersed in a homogeneous isotropic achiral medium. We use the three-dimensional (3D) complex formalism previously developed [1], except that instead of the Tellegen constitutive relations

$$\mathbf{D} = \epsilon \mathbf{E} + \alpha \mathbf{H} , \quad \mathbf{B} = \mu \mathbf{H} + \beta \mathbf{E}$$
 (1)

we use the Post constitutive relations [2]

$$\mathbf{D} = \epsilon \mathbf{E} + i \gamma \mathbf{B}$$
, $\mathbf{H} = i \gamma E + \mu^{-1} B$, $i = \sqrt{-1}$ (2)

which, in addition to being covariant, make calculations easier and from (1) and (2) we get

$$\alpha = i\gamma\mu$$
, $\beta = -i\gamma\mu$. (2')

In these relations **E**, **H** are the electric and magnetic fields, **D** the displacement field, **B** the magnetic induction, ϵ, μ the permittivity and permeability, and α, β, γ the chirality parameters.

In the 3D complex formalism the electromagnetic field is described by a complex vector

$$\mathbf{\Lambda} = \sqrt{\epsilon} \mathbf{E} + i \sqrt{\mu} \mathbf{H} , \qquad (3)$$

satisfying Maxwell's equations

$$\nabla \times \Lambda = in^{\pm} \partial_{x_0} \Lambda, \quad \nabla \cdot \Lambda = 0, \quad x_0 = ct,$$
 (4)

 ∇ is the nabla symbol and the refractive index n^{\pm} is

$$n^{\pm} = (\epsilon \mu)^{1/2} (1 \pm \xi \gamma)$$
, $\xi = \left[\frac{\mu}{\epsilon}\right]^{1/2}$. (5)

We note Λ^+ (respectively Λ^-) the solutions of Eqs. (4) with n^+ (respectively n^-). For an achiral medium where $\gamma = 0$ we use the notations

$$\epsilon', \ \mu', \ n' = \sqrt{\epsilon' \mu'}, \ \xi' = \left[\frac{\mu'}{\epsilon'}\right]^{1/2}, \ \Lambda'.$$
 (6)

Let us now consider the plane-wave solutions of Eqs. (4) when the (x,z) plane is the incidence plane. In an achiral medium, the components Λ'_j (j=1,2,3) of a linearly polarized wave are [1]

$$\Lambda_j'(x,z,x_0) = e^{-ik_0(x_0 + n'x\cos\theta + n'z\sin\theta)} F_j(\theta)\psi', \qquad (7)$$

witl

$$F_1(\theta) = -i\sin\theta$$
, $F_2(\theta) = 1$, $F_3(\theta) = i\cos\theta$, (8)

where ψ' is the wave amplitude with components ψ'_E and ψ'_H that we write in agreement with (3):

$$\psi' = \sqrt{\epsilon'} \psi'_F + i \sqrt{\mu'} \psi'_H , \qquad (9)$$

Two circularly polarized waves propagate in the chiral medium. One is right handed, the other is left handed corresponding to both signs of n in Eqs. (4). The components Λ_j^{\pm} of these waves are [1]

$$\Lambda_{j}^{\pm}(x,z,x_{0}) = e^{-ik_{0}(x_{0}+n^{\pm}x\cos\theta^{\pm}+n^{\pm}z\sin\theta^{\pm})}F_{j}^{\pm}(\theta^{\pm})\psi^{\pm},$$
(10)

with

$$F_1^+(\theta^+) = -i\sin\theta^+, \quad F_2^+(\theta^+) = 1, \quad F_3^+(\theta^+) = i\cos\theta^+,$$

$$F_1^-(\theta^-) = i\sin\theta^-, \quad F_2^-(\theta^-) = 1, \quad F_3^-(\theta^-) = -i\cos\theta^-.$$
(11)

But for circularly polarized waves we have $\pm i\sqrt{\mu}H = \sqrt{\epsilon}E$, so we define the amplitudes in (10) by the relations

$$\psi^{+} = 2\sqrt{\epsilon}\psi_E , \quad \psi^{-} = -2i\sqrt{\mu}\psi_H . \tag{12}$$

For a plane wave incident from an achiral medium on the boundary S of a chiral medium located at x=0 the continuity of the phase $e^{ik(\cdots)}$ on S implies the Descartes-Snell relations

$$n'\sin\theta_i = n'\sin\theta_r = n^+\sin\theta_t^+ = n^-\sin\theta_t^-, \qquad (13)$$

where θ_i , θ_r , θ_t^{\pm} are the angles of incidence, reflection, and refraction, respectively.

Now if the incident wave comes from the chiral medium and if the boundary S is located at x = d the Descartes-Snell relations become

$$n^{\pm} \sin \varphi_t^{\pm} = n^{\pm} \sin \varphi_r^{\pm} = n' \sin \varphi_t , \qquad (14)$$

where φ_i^{\pm} , φ_r^{\pm} , φ_t are now the angles of incidence, reflection, and refraction at x = d.

48

Here we want to calculate the amplitudes of the fields reflected and refracted by a chiral slab located between x=0 and x=d. Of course this requires us to know the boundary conditions at both interfaces.

II. BOUNDARY CONDITIONS

A. Achiral-chiral interface

A linearly polarized wave is incident on the boundary surface S of a chiral medium at x = 0. In the chiral medium propagate two circularly polarized waves and the boundary conditions requiring the continuity of the tangential components of E and H across the interface S take the form [1]

$$\sqrt{\epsilon} (\text{Re} \mathbf{\Lambda}')_{y,z} = \sqrt{\epsilon'} (\mathbf{\Lambda}^+ + \mathbf{\Lambda}^-)_{y,z} ,$$

$$\sqrt{\mu} (\text{Im} \mathbf{\Lambda}')_{y,z} = \sqrt{\mu'} (\mathbf{\Lambda}^+ - \mathbf{\Lambda}^-)_{y,z} .$$
(15)

Now in agreement with (9) and (12) we write the amplitude ψ' and ψ^{\pm} in (7) and (10):

$$\begin{split} \psi_i' &= \sqrt{\epsilon'} Q_E + i \sqrt{\mu'} Q_H \quad \text{(incident wave)} \; , \\ \psi_r' &= \sqrt{\epsilon'} Q_E + i \sqrt{\mu'} Q_H \quad \text{(reflected wave)} \; , \\ \psi_t^+ &= 2 \sqrt{\epsilon} T_E \; , \quad \psi_t^- = -2i \sqrt{\mu} T_H \quad \text{(refracted waves)} \; . \end{split}$$

Leaving aside the exponential term in agreement with (13) we get from (7), (10), and (16) for the components $\Lambda'_{\nu,z}$ and $\Lambda^{\pm}_{\nu,z}$

$$\begin{split} & \Lambda_y' = \sqrt{\epsilon'} (Q_E + R_E) + \sqrt{\mu'} (Q_H + R_H) , \\ & \Lambda_z' = i \sqrt{\epsilon'} \cos(\theta_i) (Q_E - R_E) - \sqrt{\mu'} \cos(\theta_i) (Q_H - R_H) , \end{split}$$
 (17a)

where in Λ'_z we used the relation $\cos \theta_r = -\cos \theta_i$ and

$$\begin{split} & \Lambda_y^+ = 2\sqrt{\epsilon}T_E \ , \quad \Lambda_y^- = -2i\sqrt{\mu}T_H \ , \\ & \Lambda_z^+ = 2i\sqrt{\epsilon}\cos(\theta_t^+)T_E \ , \quad \Lambda_z^- = -2\sqrt{\mu}\cos(\theta_t^-)T_H \ . \end{split} \tag{17b}$$

Substituting (17a) and (17b) into (15) gives the relations

$$Q_H + R_H = T_H - i\xi^{-1}T_E$$
 ,
 $Q_E + R_E = T_E - i\xi T_H$, (18a)

and

$$\xi'\cos(\theta_i)(Q_H\!-\!R_H)\!=\!\xi\cos(\theta_i^-)T_H\!-\!i\cos(\theta_i^+)T_E \ , \eqno(18b)$$

$$\xi'^{-1}\cos(\theta_i)(Q_E - R_E) = \xi^{-1}\cos(\theta_t^+)T_E - i\cos(\theta_t^-)T_H$$
.

In terms of the incident amplitudes Q_E , Q_H the solution of (18a) and (18b) has the form

$$T_E = T_{11}Q_E + T_{12}Q_H$$
, $R_E = R_{11}Q_E + R_{12}Q_H$,
 $T_H = T_{21}Q_E + T_{22}Q_H$, $R_H = R_{21}Q_E + R_{22}Q_H$. (19)

Then, introducing the notations

$$a_{11} = \frac{1}{2} \left[1 + \frac{\xi}{\xi'} \frac{\cos \theta_t^-}{\cos \theta_i} \right], \quad a_{12} = \frac{-i}{2\xi} \left[1 + \frac{\xi}{\xi'} \frac{\cos \theta_t^+}{\cos \theta_i} \right],$$
(20a)

$$a_{21} = \frac{-i\xi}{2} \left[1 + \frac{\xi'}{\xi} \frac{\cos \theta_t^-}{\cos \theta_i} \right] , \quad a_{22} = \frac{1}{2} \left[1 + \frac{\xi'}{\xi} \frac{\cos \theta_t^+}{\cos \theta_i} \right] ,$$

and with $A = a_{11}a_{22} - a_{12}a_{21}$,

$$b_{11} = A^{-1}(a_{11} + i\xi a_{12})$$
, $b_{12} = A^{-1}(a_{21} + i\xi a_{22})$, (20b

$$b_{21}\!=\!A^{-1}(a_{12}\!+\!i\xi^{-i}a_{11})\;,\;\;b_{22}\!=\!A^{-1}(a_{22}\!+\!i\xi^{-1}a_{21})\;,$$

we get

$$T_{rs} = A^{-1}a_{rs}$$
, $r, s = 1, 2$,
 $R_{11} = b_{11} - 1$, $R_{12} = -b_{12}$, (21)
 $R_{21} = -b_{21}$, $R_{22} = b_{22} - 1$.

These relations are the Fresnel formulas for a linearly polarized plane waves incident from an achiral medium on the plane boundary of a chiral medium. Similar results have been previously obtained by several authors [3,4,5] using different constitutive relations.

B. Chiral-achiral medium

Let us now consider a couple of right-handed and left-handed circularly polarized plane waves incident from an achiral medium on a plane surface located at x = d. It is assumed that these circularly polarized waves were generated by a linearly polarized wave incident on the plane x = 0

The boundary conditions (15) are still valid; only the expressions of the wave amplitudes change. Discarding in agreement with (14) the exponentials

$$e^{-ik_0(x_0+nz\sin\varphi)}$$

and introducing the angles

$$\delta_i^{\pm} = k_0 n^{\pm} \cos(\varphi_i^{\pm}) d = -\delta_r^{\pm}, \quad \delta_t = k_0 n' \cos(\varphi_t) d,$$
 (22)

we get from (10), (11), and (12) at x = d

$$\Lambda_{y}^{+} = 2\sqrt{\epsilon} (\hat{Q}_{E} e^{i\delta_{i}^{+}} + \hat{R}_{E} e^{-i\delta_{i}^{+}}),$$

$$\Lambda_{y}^{-} = -2i\sqrt{\mu} (\hat{Q}_{H} e^{i\delta_{i}^{-}} + \hat{R}_{H} e^{-i\delta_{i}^{-}}),$$

$$\Lambda_{z}^{+} = 2i\sqrt{\epsilon} \cos\varphi_{i}^{+} (Q_{E} e^{i\delta_{i}^{+}} - \hat{R}_{E} e^{-i\delta_{i}^{+}}),$$

$$\Lambda_{z}^{-} = -2\sqrt{\mu} \cos\varphi_{i}^{-} (Q_{H} e^{i\delta_{i}^{-}} - \hat{R}_{H} e^{-i\delta_{i}^{-}}),$$
(23)

where we used in Λ_z^{\pm} the relation $\cos \varphi_i^{\pm} = -\cos \varphi_i^{\pm}$. Similarly from (7), (8), (9) we have

$$\Lambda'_{y} = (\sqrt{\epsilon'} \hat{T}_{E} + i \sqrt{\mu'} \hat{T}_{H}) e^{i\delta_{t}} ,$$

$$\Lambda'_{z} = [i \cos(\varphi_{t}) \sqrt{\epsilon'} \hat{T}_{E} - \cos(\varphi_{t}) \sqrt{\mu'} \hat{T}_{H}] e^{i\delta_{t}} .$$
(24)

In (23) and (24) \hat{Q} , \hat{R} , and \hat{T} represent the amplitudes of

the incident reflected and refracted waves at x = d. Substituting (23) and (24) into (15) gives the relations

$$\hat{T}_{H}e^{i\delta_{t}} = \hat{Q}_{H}e^{i\delta_{i}^{-}} + \hat{R}_{H}e^{-\delta_{i}^{-}} - i\xi^{-1}(\hat{Q}_{E}e^{i\delta_{i}^{+}} + \hat{R}_{E}e^{-i\delta_{i}^{+}}) ,$$
(25a)

$$\hat{T}_E e^{i\delta_t} = \hat{Q}_E e^{i\delta_i^+} + \hat{R}_E e^{i\delta_i^-} - i\xi(\hat{Q}_H e^{i\delta_i^-} + \hat{R}_H e^{-i\delta_i^-})$$

and

$$\begin{split} \xi'\cos(\varphi_t)e^{i\delta_t}\widehat{T}_H = & \xi\cos(\varphi_t^-)(\widehat{Q}_He^{i\delta_i^-} - \widehat{R}_He^{-i\delta_i^-}) \\ & -i\cos(\varphi_i^+)(\widehat{Q}_Ee^{i\delta_i^+} - \widehat{R}_Ee^{-i\delta_i^+}) \ , \end{split}$$

$$\begin{split} \xi'^{-1}\cos(\varphi_t)e^{i\delta_t}\widehat{T}_E &= \xi^{-1}\cos(\varphi_t^+)(\widehat{Q}_Ee^{i\delta_i^+} - \widehat{R}_Ee^{-i\delta_i^+}) \\ &- i\cos(\varphi_i^-)(\widehat{Q}_He^{i\delta_i^-} - \widehat{R}_He^{-i\delta_i^-}) \ . \end{split}$$

To solve (25a) and (25b) we introduce the functions

$$\alpha^{\pm}(\varphi_i) = 1 \mp \frac{\xi}{\xi'} \frac{\cos \varphi_i}{\cos \varphi_t} , \quad \beta^{\pm}(\varphi_i) = 1 \mp \frac{\xi'}{\xi} \frac{\cos \varphi_i}{\cos \varphi_t} , \qquad (26)$$

and the matrices C^{\pm} with the elements

$$c_{11}^{\pm} = \pm \xi' \cos(\varphi_{t}) e^{\pm i\delta_{i}^{-}} \alpha^{\pm}(\varphi_{i}^{-}) ,$$

$$c_{12}^{\pm} = \mp i \frac{\xi'}{\xi} \cos(\varphi_{t}) e^{\pm i\delta_{i}^{+}} \alpha^{\pm}(\varphi_{i}^{+}) ,$$

$$c_{21}^{\pm} = \mp i \frac{\xi}{\xi'} \cos(\varphi_{t}) e^{\pm i\delta_{i}^{-}} \beta^{\pm}(\varphi_{i}^{-}) ,$$

$$c_{22}^{\pm} = \pm \frac{1}{\xi'} \cos(\varphi_{t}) e^{\pm i\delta_{i}^{+}} \beta^{\pm}(\varphi_{i}^{+}) .$$
(27)

Then, eliminating \hat{T}_E and \hat{T}_H from (25a) and (25b) gives

$$c_{H}^{+}\hat{Q}_{H} + c_{12}^{+}\hat{Q}_{E} = c_{11}^{-}\hat{R}_{H} + c_{12}^{-}\hat{R}_{E} ,$$

$$c_{21}^{+}\hat{Q}_{H} + c_{22}^{+}\hat{Q}_{E} = c_{21}^{-}\hat{R}_{H} + c_{22}^{-}\hat{R}_{E} .$$
(28)

The solution of the system (28) is

$$\hat{R}_{H} = r_{11}\hat{Q}_{H} + r_{12}\hat{Q}_{E} ,$$

$$\hat{R}_{E} = r_{21}\hat{Q}_{H} + r_{22}\hat{Q}_{E} ,$$
(29)

with

$$\begin{split} r_{11} &= \Gamma^{-1} (c_{22}^{-}c_{11}^{+} - c_{12}^{-}c_{21}^{+}) , \quad r_{12} = \Gamma^{-1} (c_{22}^{-}c_{12}^{+} - c_{12}^{-}c_{22}^{+}) , \\ r_{21} &= \Gamma^{-1} (c_{11}^{-}c_{21}^{+} - c_{21}^{-}c_{11}^{+}) , \quad r_{22} = \Gamma^{-1} (c_{11}^{-}c_{22}^{+} - c_{21}^{-}c_{12}^{+}) , \\ \Gamma &= c_{11}^{-}c_{22}^{-} - c_{12}^{-}c_{21}^{-} . \end{split}$$
 (29')

Now substituting (28) into (25a) gives

$$\hat{T}_{H} = t_{11} \hat{Q}_{H} + t_{12} \hat{Q}_{E} ,$$

$$\hat{T}_{E} = t_{21} \hat{Q}_{H} + t_{22} \hat{Q}_{E} ,$$
(30)

with

$$t_{11} = (1 + r_{11} - i\xi^{-1}r_{21})e^{i(\delta_i^- - \delta_t)},$$

$$t_{12} = -i\xi^{-1}(1 + r_{22} + i\xi r_{12})e^{i(\delta_i^+ - \delta_t)},$$

$$t_{21} = -i\xi(1 + r_{11} + i\xi^{-1}r_{21})e^{i(\delta_i^- - \delta_t)},$$

$$t_{22} = (1 + r_{22} - i\xi r_{12})e^{i(\delta_i^+ - \delta_t)}.$$
(30')

Relations (29) and (30) are the Fresnel formulas for the reflected and refracted electromagnetic fields at a chiral-achiral interface.

III. ELECTROMAGNETIC WAVES THROUGH A CHIRAL SLAB

Let us now consider a chiral slab of thickness d immersed in an achiral medium and confined between the two planes x=0 and x=d. A linearly polarized wave is incident at an angle θ_i on the interface x=0. We assume [4] that four waves propagate in the slab: two toward the interface x=d and the other two toward the interface x=0. Then, one has 11 angles of incidence, reflection, and refraction as shown in Fig. 1,

$$\theta_i, \theta_r, \theta_t^{\pm}, \varphi_i^{\pm}, \varphi_r^{\pm}, \varphi_t, \chi_i^{\pm} , \qquad (31)$$

where χ_i^{\pm} is the angle of incidence at x=0 for the wave \hat{R} reflected at x=d. But they are not independent since one has

chiral medium

FIG. 1. A homogeneous isotropic chiral slab immersed in a homogeneous isotropic achiral medium. The notation shown refers to a plane wave incident from the left.

$$\varphi_i^{\pm} = \theta_i^{\pm}, \quad \chi_i^{\pm} = \pi - \varphi_r^{\pm}.$$
 (31')

Now the Descartes-Snell relations are

$$n' \sin \theta_i = n' \sin \theta_r = n^{\pm} \sin \theta_t^{\pm} = n^{\pm} \sin \varphi_r^{\pm} = n' \sin \varphi_t$$
, (32)

which implies $\theta_i = \varphi_t$ in addition to $\theta_r = \pi - \theta_i$, $\varphi_r^{\pm} = \pi - \theta_t^{\pm}$.
The incident, reflected, and refracted fields are

$$Q = (Q_H, Q_E) , \quad R = (R_H, R_E) ,$$

$$T = (T_H, T_E) = \hat{Q} = (\hat{Q}_H, \hat{Q}_E) ,$$

$$\hat{R} = (\hat{R}_H, \hat{R}_E) , \quad \hat{T} = (\hat{T}_H, \hat{T}_E) .$$
(33)

Let us now apply the boundary conditions (15) at x = 0. The relations (17a) are still valid while instead of (17b) one has

$$\begin{split} & \Lambda_{y}^{+} = 2\sqrt{\epsilon}(T_{E} + \hat{R}_{E}) , \\ & \Lambda_{y}^{-} = -2i\sqrt{\mu}(T_{H} + \hat{R}_{H}) , \\ & \Lambda_{z}^{+} = 2i\cos(\theta_{t}^{+})\sqrt{\epsilon}(T_{E} - \hat{R}_{E}) , \\ & \Lambda_{z}^{-} = -2\cos(\theta_{t}^{-})\sqrt{\mu}(T_{H} - \hat{R}_{H}) , \end{split}$$

$$(34)$$

where we used the relation $\varphi_r^{\pm} = \pi - \theta_t^{\pm}$.

From (17a) and (34) we get the four equations

$$\begin{aligned} Q_{H} + R_{H} &= T_{H} + \hat{R}_{H} - i\xi^{-1}(T_{E} + \hat{R}_{E}) , \\ Q_{E} + R_{E} &= T_{E} + \hat{R}_{E} - i\xi(T_{H} + \hat{R}_{H}) \end{aligned} \tag{35a}$$

and

$$\cos(\theta_{i})\xi'(Q_{H}-R_{H}) = \cos(\theta_{t}^{-})\xi(T_{H}-\hat{R}_{H}) - i\cos(\theta_{t}^{+})(T_{E}-\hat{R}_{E}) ,$$

$$\cos(\theta_{i})\xi'^{-1}(Q_{E}-R_{E}) = \cos(\theta_{t}^{+})\xi^{-1}(T_{E}-\hat{R}_{E}) - i\cos(\theta_{t}^{-})(T_{H}-\hat{R}_{H}) .$$
(35b)

Let us remark that in (17a) the amplitudes (R_E, R_H) represent the reflected field due to the incident field (Q_E, Q_H) . But in (35) (R_E, R_H) include also the refracted amplitudes due to the field (\hat{R}_E, \hat{R}_H) reflected from the interface x = d.

Eliminating R_E and R_H from relations (35) gives

$$Q = \mathcal{A}^+ T + \mathcal{A}^- R , \qquad (36)$$

where \mathcal{A}^+ is the matrix with elements (20a) that from now on we denote a_{rs}^+ , r, s = 1,2 and \mathcal{A}^- the matrix with elements a_{rs}^- obtained by changing $(1 + \cdots)$ into $(1-\cdots)$ in (20a).

We now use relations (29) and (30) supplied by the boundary conditions at the interface x = d. Since according to (33) one has $(T_E, T_H) = (\hat{Q}_E, \hat{Q}_H)$ we may write (29)

$$\widehat{R} = \mathcal{R}T \tag{37}$$

where \mathcal{R} is the matrix with elements (29').

Eliminating \hat{R}_E and \hat{R}_H from (36) and (37) gives

$$Q = \mathcal{U}T \tag{38}$$

where \mathcal{U} is the matrix with elements [using (20a) and

$$u_{11} = a_{11}^+ + r_{11}a_{11}^- + r_{12}a_{12}^-$$
, $u_{12} = a_{12}^+ + r_{12}a_{11}^- + r_{22}a_{12}^-$, (38')

$$u_{21} = a_{21}^+ + r_{11}a_{12}^- + r_{21}a_{22}^-$$
, $u_{22} = a_{22}^+ + r_{12}a_{21}^- + r_{22}a_{22}^-$.

The solution of system (38) is

$$T = \mathcal{U}^{-1}Q . \tag{39}$$

Now from (35a) and (37) we get

$$R = -Q + \mathcal{V}T \tag{40}$$

with

$$v_{11} = 1 + r_{11} - i\xi^{-1}r_{21}$$
, $v_{12} = -i\xi^{-1}(1 + r_{22} + i\xi r_{12})$, (40')

$$v_{21} = -i\xi(1+r_{11}+i\xi^{-1}r_{21})$$
, $v_{22} = 1+r_{22}-i\xi r_{12}$.

Substituting (39) into (40) gives the amplitude of the electromagnetic field reflected by the achiral slab

$$R = -(1 - \mathcal{U}^{-1}\mathcal{V})Q . {41}$$

To obtain the amplitudes refracted by the slab we use once more the equality $(\widehat{Q}_E, \widehat{Q}_H) = (T_E, T_H)$ and we write (30)

$$\hat{T} = TT$$
, (42)

where \mathcal{T} is the matrix with elements (30').

Substituting (39) into (42) gives

$$\hat{T} = \mathcal{T}\mathcal{U}^{-1}Q \ . \tag{43}$$

The expressions (43) represent the field diffracted by a chiral slab.

To sum up, in terms of the incident time-harmonic linearly polarized plane wave $Q = \begin{pmatrix} Q_H \\ Q_F \end{pmatrix}$ the expressions of the reflected field $R=({R_H \atop R_E})$ at the interface x=0 and of the refracted field $\widehat{T}=({\widehat{T}_H \atop \widehat{T}_E})$ at the interface x=d of a chiral slab are

$$R = -(1 - \mathcal{U}^{-1}\mathcal{V})Q$$
, $\hat{T} = \mathcal{T}\mathcal{U}^{-1}Q$, (44)

where \mathcal{U} , \mathcal{V} , and \mathcal{T} are the matrices (38'), (40'), and (30'), respectively.

IV. CONCLUSIONS

In this work we used the 3D complex formalism to discuss the propagation of time-harmonic plane waves in a chiral slab assuming that four waves propagate in the slab. We do not discuss the physical implications of relations (44) since it was already made, for instance, in [4].

The real question is whether the 3D complex formalism is simpler than the Maxwell-Heaviside formalism to discuss electromagnetic wave propagation in chiral media. Since the 3D complex formalism is not covariant under the space inversions the answer is a priori yes for people thinking that a physical problem is easier to solve when the mathematical formalism respects the physical symmetries.

This a priori positive answer is justified by the comparison of the results obtained here with those of [4] and in fact we used the same assumptions as in [4] to make this comparison possible. According to (44) the reflected and

refracted amplitudes by the chiral slab require only the inversion of the 2×2 matrix $\mathcal U$ while in [4] one has to inverse a 8×8 matrix a much more difficult task.

The author regrets having no access to a computer, making him unable to discuss more realistic problems, but he hopes that some people will be convinced that the 3D complex formalism is worth using.

^{*}Address for correspondence: 86 Bis Route de Croissy, 78110 Le Vésinet, France.

^[1] P. Hillion, Phys. Rev. E 47, 1365 (1993).

^[2] E. J. Post, Formal Structure of Electromagnetics (North-Holland, Amsterdam, 1962).

^[3] M. P. Silvermann, J. Opt. Soc. Am. A 3, 830 (1986).

^[4] S. Bassiri, C. H. Pappas, and N. Engheta, J. Opt. Soc. Am. A 5, 1450 (1988).

^[5] A. Lakhtakia, V. V. Varadan, and V. K. Varadan J. Opt. Soc. Am. A 7, 1654 (1990).